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Abstract
Here we present a semi-algorithm to find elementary first integrals of 3D
polynomial dynamical systems. It is a Darboux type procedure that extends the
method built by Prelle and Singer for 2D systems. Although it cannot deal with
the general case, the method presents a direct/simple way to find elementary
first integrals.

PACS number: 02.30.Hq

1. Introduction

Recently, there has been an increase in the search for algorithmic methods to deal with
dynamical systems. One of the main reasons is that the recent advances in computational
power allow a fast calculation of many procedures that were beyond all possibilities a few
years ago.

The problem involving the integrability of dynamical systems is classical and difficult.
In essence, this would imply finding a certain number of first integrals. Many of the most
effective and used methods are based on ansatz on the general structure of such first integrals,
and therefore, not algorithmic in nature. Darboux, in 1878 [1], gave the first steps in order
to algorithmically determine first integrals, basing his method on a link between algebraic
geometry and the search of first integrals. He showed how to construct the first integrals
of a planar polynomial vector field having sufficient number of invariant algebraic curves.
Those algebraic curves are defined by polynomials: the so-called Darboux polynomials. In
general, the most complex task involved in any Darboux type method is the determination of
the Darboux polynomials themselves.

In [2], Cairó and Llibre pointed out that by using the exponential factors, introduced by
Cristopher [3], the Darboux methods could be generalized to deal with elementary (rather than
just algebraic) first integrals.

1751-8113/10/065204+17$30.00 © 2010 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/43/6/065204
mailto:lduarte@dft.if.uerj.br
mailto:damota@dft.if.uerj.br
http://stacks.iop.org/JPhysA/43/065204


J. Phys. A: Math. Theor. 43 (2010) 065204 L G S Duarte and L A C P da Mota

Concomitantly to these developments, in 1983, Prelle and Singer [5] found a semi-
algorithmic approach to find elementary first integrals of 2D vector fields. The attractiveness
of the Prelle–Singer (PS) method lies not only in the fact that it is based on an algebraic point
of view but also if the given system has a first integral in terms of elementary functions, the
method guarantees that this first integral will be found (though, in principle it can admittedly
take an infinite amount of time to do so).

Because of its remarkable characteristics the PS method has generated many extensions
[6–18]. In particular, in [8–10, 12, 13, 15] the PS method was extended to deal with rational
first-order ordinary differential equations (ODEs) presenting Liouvillian solutions. In [16–18],
the PS method was extended to deal with second-order ODEs. These approaches dealt with
rational second-order ODEs that present elementary1 general solutions or elementary first
integrals.

Our idea in this work was to extend the PS method for 3D polynomial dynamical systems.
In this paper, we present a semi-algorithm that extends the work done in [5] to find elementary
first integrals of a class of 3D polynomial systems of first-order ODEs and is a natural extension
of [18]2. In addition this semi-algorithm can also find first integrals that were missed by the
method of exponential factors introduced by Cairó and Llibre [2]3.

In section 2, we present some basic concepts and a summary of the work by Prelle and
Singer. In the following section, we introduce our main results and how to use them to produce
a semi-algorithm to find elementary first integrals of a class of 3D polynomial systems of first-
order ODEs. Finally, we present our conclusions and point out some directions to further our
work.

2. Some basic concepts and the PS method

In this section, we will describe some basic concepts involving 2D polynomial systems of
first-order ODEs and present some results of Prelle and Singer that were necessary to extend
their method.

2.1. Integrating factors for 2D autonomous systems of first-order ODEs

Let us consider a system given by
dx

dt
= ẋ = N(x, y),

dy

dt
= ẏ = M(x, y), (1)

where M and N are polynomials in (x, y).
A function I(x, y) is a first integral of system (1) if I(x, y) is a constant over all solution

curves of (1), i.e. dI
dt

= 0. Therefore, over the solutions,
dI

dt
= ∂xI ẋ + ∂yI ẏ = N∂xI + M∂yI = 0. (2)

Defining

D ≡ N∂x + M∂y, (3)

as the Darboux operator associated with the 2D system (1), we can see that a function I(x, y)
is a first integral of the system iff D[I ] = 0. Besides, looking at system (1) we can write it in
the form

dt = dx

N
= dy

M
(4)

1 For a formal definition of elementary function, see section 2.2 or [19].
2 There we have dealt with an extension of the Prelle–Singer approach for 2ODEs.
3 Later, in section 3.4, we will explain why.
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and so, over its solutions, M dx = N dy. This means that the 1-form γ defined by
γ ≡ M dx − N dy is null over the solutions of the system, i.e. over the solutions,

γ ≡ M dx − N dy = 0. (5)

From these results we have the following.

If I(x, y) is a first integral of the 2D system (1) then the 1-form dI is proportional to the 1-form
γ defined above, i.e.

dI = rγ, (6)

where r is a function of (x, y).

Let us see: consider the space of 1-forms in two variables and let {γ, ν} be a basis, where γ is
the 1-form defined above. So, we can write dI in this basis as dI = rγ + sν where r and s are
functions of (x, y). However, from the results (2) and (5), over the solutions of system (1),
we have that dI = 0 and γ = 0. This leads to sν = 0. Since ν is independent of γ (therefore,
not null over the solutions), we must have that s = 0. �
From (6) we have

Ix dx + Iy dy = r(M dx − N dy) (7)

(where Iu means ∂uI ) implying that

Ix = rM, Iy = −rN. (8)

Therefore, if we determine r, we can find I via quadratures:

I (x, y) =
∫

Ix dx +
∫ [

Iy − ∂

∂y

∫
Ix dx

]
dy

=
∫

rM dx −
∫ [

rN +
∂

∂y

∫
rM dx

]
dy. (9)

2.2. Three important results and the PS method

To enunciate the first result, let us make some definitions:

Definition 1. Let K be a field of functions. The function θ is called an elementary generator
over K if:

(a) θ is algebraic over K, i.e. θ is a solution of a polynomial equation with coefficients in K.
(b) θ is an exponential over K, i.e. There exists a η in K such that θ ′ = η′θ , that is another

way to say that θ = exp η.
(c) θ is a logarithm over K, i.e. There exists a η in K such that θ ′ = η′/η, that is another way

to say that θ = ln η.

Definition 2. Let K be a field of functions. An extension E = K(θ1, . . . , θn) is called a field
of elementary functions over K if each θi is an elementary generator over K. A function is
elementary over K if it belongs to a field of elementary functions over K.

In this paper elementary function means a function that belongs to an elementary extension
of the field C[x, y, z].

Definition 3. A function R(x, y) satisfying R(A dx +B dy) = dI (where A and B are functions
of (x, y)) is called an integrating factor of the 1-form (A dx + B dy).

3
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From (7), (8) and by the definition 3 above, we can see that r is an integrating factor of the
1-form γ = M dx − N dy. Using the compatibility condition (Ixy = Iyx), we get

Nrx + rNx + Mry + rMy = 0. (10)

Using the Darboux operator D defined in (3) we can write (10) in the form

D[r]

r
= −(Nx + My). (11)

In other words we are saying that D[r]
r

is a polynomial. This result will prove to be very
important (see below).

In [5], Prelle and Singer demonstrated two other important results that, together with (11),
allowed the construction of a semi-algorithm to search for elementary first integrals of 2D
systems of polynomial first-order ODEs. These are as follows.

(1) Consider the system of ODEs defined by

dxi

dt
= fi(x1, x2, . . . , xn), (12)

where fi belongs to a differential field K. If there is a function g(x1, x2, . . . , xn), belonging
to an elementary extension of K such that g is a constant over the solutions to (12), then
there is a function I (x1, x2, . . . , xn) of the form

I = W0 +
∑
i>0

ci ln(Wi), (13)

where Wi are algebraic functions over K, which is a constant over the solutions of (12).
(2) If the 2D system of first-order ODEs (1) has an elementary first integral then there exists

an integrating factor R for the 1-form (M dx−N dy) that is an algebraic function of (x, y)

such that Rκ (where κ is an integer) is a rational function of (x, y), i.e. R can be written
as

R =
∏

i

p
ni

i , (14)

where pi are irreducible polynomials of (x, y) and ni are non-zero rational numbers.

One can note that the first result shown above (13), pertaining the general form of the first
integral, refers to systems of any order. The second result (14), on the other hand, is specific
for 2D autonomous systems.

With these three results Prelle and Singer were able to construct a semi-decision procedure
to find elementary first integrals of 2D autonomous systems. Let us see from (3) and (14), we
have

D[R]

R
= D

[ ∏
i p

ni

i

]
∏

k p
nk

k

=
∑

i p
ni−1
i niD[pi]

∏
j �=i p

nj

j∏
k p

nk

k

=
∑

i

p
ni−1
i niD[pi]

p
ni

i

=
∑

i

ni

D[pi]

pi

. (15)

From (11), plus the fact that M and N are polynomials, we conclude that D[R]/R is a
polynomial. Therefore, from (15) plus the fact that pi are irreducible polynomials, we have
that pi |D[pi] (i.e. pi is a divisor of D[pi]). The irreducible polynomials pi are called Darboux
polynomials associated with the Darboux operator D and, since pi |D[pi], we can write
D[pi]/pi = qi , where qi are polynomials called co-factors.

4
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We now have a criterion for choosing the possible pi (build all the possible divisors of
D[pi]) and, by using (11) and (15), we have

∑
i

ni

D[pi]

pi

= −(Nx + My). (16)

If we manage to solve (16) and thereby find ni, we know an integrating factor for the 1-form
(M dx − N dy) and the problem of finding an elementary first integral I for system (1) is
reduced to a quadrature. Since we do not have an upper bound on the degree of the pi

polynomials (the building blocks of the integrating factor R), we say that the Prelle and Singer
method is a semi-algorithm waiting for this upper bound to become an algorithm.

So, we can note that, basically, the method developed by Prelle and Singer is based upon
three results.

(1) If R is an integrating factor of the 2D system (1), then the compatibility condition
(Ixy = Iyx) can be written in the form D[R]

R
= −(Nx + My), where D ≡ N∂x + M∂y , i.e.

D[R]
R

is a polynomial.
(2) If the 2D system (1) presents an elementary first integral, then it presents one of the type

I = W0 +
∑

i>0 ci ln(Wi), where Wi are algebraic functions of (x, y).
(3) If the 2D system (1) presents an elementary first integral, then it presents an integrating

factor R of the form R = ∏
i p

ni

i , i.e. Rκ (κ integer) is a rational function of (x, y).

3. A method to search for first integrals of 3D polynomial systems of first-order ODEs

In this section we will describe some basic concepts involving 3D polynomial systems of
first-order ODEs and how we can produce some results that are the analog of the results
presented in the end of the previous section for 2D systems. These results will allow for the
production of a semi-algorithm to deal with a class of 3D polynomial systems of first-order
ODEs presenting, at least, one elementary first integral.

3.1. First integrals for 3D systems

Consider the 3D system given by

dx

dt
= ẋ = f (x, y, z),

dy

dt
= ẏ = g(x, y, z),

dz

dt
= ż = h(x, y, z),

(17)

where f, g and h are polynomials in (x, y, z).
A function I (x, y, z) is a first integral of system (17) if I (x, y, z) is a constant over all

solution curves of (17), i.e. dI
dt

= 0. Therefore, over the solutions,

dI

dt
= ∂xI ẋ + ∂yI ẏ + ∂zI ż = f ∂xI + g ∂yI + h ∂zI = 0. (18)

Defining now

D ≡ f ∂x + g∂y + h∂z, (19)

5
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as the Darboux operator associated with (17), we can write the condition for a function
I (x, y, z) to be a first integral of the 3D system (17) as D[I ] = 0. Again, like for the 2D
system (1), looking at system (17) we can write it in the form

dt = dx

f
= dy

g
= dz

h
(20)

and so, over its solutions, we have4 g dx = f dy and h dx = f dz. This means that the
1-forms α and β defined by α ≡ g dx − f dy and β ≡ h dx − f dz are null over the solutions
of the system, i.e. over the solutions,

α ≡ g dx − f dy = 0 and β ≡ h dx − f dz = 0. (21)

From these results we have the following.

If I (x, y, z) is a first integral of the 3D system (17), then the 1-form dI is a vector in the
subspace spanned by the 1-forms α and β defined above, i.e.

dI = rα + sβ, (22)

where r and s are functions of (x, y, z).

Let us see: consider the space of 1-forms in three variables and let {α, β, μ} be a basis, where
α and β are the 1-forms defined above. We can write dI in this basis as dI = rα + sβ + aμ

where r, s and a are functions of (x, y, z). However, from the results (18) and (21), over the
solutions of system (17), we have that dI = 0, α = 0 and β = 0. This leads to aμ = 0. Since
μ is not in the subspace spanned by α and β (therefore not null over the solutions), we must
have that a = 0. �

From (22) we have

Ix dx + Iy dy + Iz dz = r(g dx − f dy) + s(h dx − f dz) (23)

implying that

Ix = −rg − sh, Iy = rf, Iz = sf. (24)

Therefore, if we determine r and s, we can find I via quadratures:

I (x, y, z) =
∫

Ixdx +
∫ (

Iy − ∂

∂y

∫
Ix dx

)
dy

+
∫ {

Iz − ∂

∂z

[∫
Ix dx +

∫ (
Iy − ∂

∂y

∫
Ix dx

)
dy

]}
dz

=
∫

(−rg − sh) dx +
∫ (

rf − ∂

∂y

∫
(−rg − sh) dx

)
dy

+
∫ {

sf − ∂

∂z

[∫
(−rg − sh) dx

+
∫ (

rf − ∂

∂y

∫
(−rg − sh) dx

)
dy

]}
dz. (25)

3.2. A proposal to construct a semi-algorithm for a class of 3D polynomial systems of
first-order ODEs

In this section we will construct an analog for each of the three results summarized at the end
of section 2.2.
4 We could equally well write (gdx = f dy, g dz = h dy) or (h dx = f dz, h dy = g dz).
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3.2.1. Writing the compatibility conditions in an appropriate form. In the case of 3D
polynomial systems of first-order ODEs, we have to determine two unknown functions r and
s (see equations (24), (25)) if we want to obtain a first integral I by quadratures. In the case
where the ratio of these two unknown functions is a rational function of (x, y, z) (this is a
restriction to the general case; see the observation below in section 3.2.2), we could write the
compatibility conditions in a form similar to the one presented in equation (11). This result
will be presented in the following theorem.

Theorem 1. Consider a 3D polynomial system of first-order ODEs (17), that presents an
elementary first integral I. If s/r (r and s defined by equation (22)) is a rational function of
(x, y, z) ( i.e. s/r = P/Q where P and Q are polynomials that do not have any common
factors), then f

D[r/Q]
r/Q

is a polynomial.

Proof of theorem 1. Using the compatibility conditions (Ixy = Iyx, Ixz = Izx, Iyz = Izy)

and (24) we get

−rgy − ryg − shy − syh = rfx + rxf, (26)

−rgz − rzg − shz − szh = sfx + sxf, (27)

rfz + rzf = sfy + syf. (28)

Performing the operations (equation (26) minus h
rf

times equation (28)) and (equation (27)
plus g

rf
times equation (28)) we can write the following two equations:

D[r]

r
+

(
fx + gy + h

fz

f

)
+

s

r

(
hy − h

fy

f

)
= 0, (29)

D[s]

r
+

s

r

(
fx + g

fy

f
+ hz

)
+

(
gz − g

fz

f

)
= 0, (30)

where D stands for the Darboux operator associated with the 3D system (17), i.e. D ≡
f ∂x + g∂y + h∂z. Since, by hypothesis, s

r
= P

Q
, where P and Q are polynomials in (x, y, z)

with no common factors, we can substitute s in equations (29) and (30) by r P
Q

. This will lead
us to

f Q
D[r]

r
= −Q(ffx + fgy + hfz) − P(f hy − hfy), (31)

f P
D[r/Q]

r/Q
= −f D[P ] − P(ffx + gfy + f hz) − Q(fgz − gfz). (32)

Adding the term −f QD[Q]
Q

in both sides of equation (31) we have

f Q
D[r/Q]

r/Q
= −f D[Q] − Q(ffx + fgy + hfz) − P(f hy − hfy). (33)

Since, by definition, P,Q, f, g and h are polynomials and D is a differential operator with
polynomial coefficients, the right-hand sides of both (32), (33) are polynomials. Therefore,
in principle, f

D[r/Q]
r/Q

is a rational function. So, let us represent it as A
B

, where A and B are
polynomials that do not have any common factors. By doing that, one can write (32), (33)
schematically as

P
A

B
= Polynomial1, (34)

7
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Q
A

B
= Polynomial2. (35)

In order to satisfy (34), (35) simultaneously, since A and B do not have common factors,
it would be necessary that B|Q and B|P . But, again by hypothesis, P and Q do not have
common factors. So, one can conclude that B is a constant. Therefore, f

D[r/Q]
r/Q

= A
B

=
polynomial.

�

3.2.2. Concerning the form of the first integral. As we have mentioned, the second result
shown at the end of section 2.2 is valid for any number of dimensions. So, we can enunciate
the following result (a corollary of a result by Prelle and Singer [5]).

If a 3D polynomial system of first-order ODEs (17) presents an elementary first integral
then it possesses one of the form

I = W0 +
∑
i>0

ci ln(Wi), (36)

where Wi are algebraic functions of (x, y, z).

Obs.: from (36) we can see that the partial derivatives of the first integral I (Ix, Iy, Iz) are (in
general) algebraic functions of (x, y, z). So, from equations (24), r and s (and, consequently,
s/r) will be algebraic functions of (x, y, z) in the general case.

3.2.3. The form of the integrating factor. To enunciate this result let us first make a definition.

Definition 4. A function R(x, y, z) satisfying

R(A dx + B dy + C dz) = dI = Ix dx + Iy dy + Iz dz (37)

where A, B and C are functions of (x, y, z) is called an integrating factor of the 1-form
A dx + B dy + C dz.

Theorem 2. Consider a 3D system of autonomous polynomial first-order ODEs (17), that
presents an elementary first integral. Then, from the result by Prelle and Singer it presents
one of the form I = W0 +

∑
i>0 ci ln(Wi), where Wi are algebraic functions of (x, y, z). If r/s

(r and s are defined above) is a rational function of (x, y, z) (i.e. s/r = P/Q where P and Q
are polynomials that do not have any common factors), then r/Q can be written as

r

Q
=

∏
i

p
ni

i (38)

where pi are irreducible polynomials in (x, y, z) and ni are non-zero rational numbers.

To prove theorem 2 we will need the following lemmas.

Lemma 1. Consider a function F of (x1, x2, x3). If the differential of F can be written as

dF = A (X1 dx1 + X2 dx2 + X3 dx3) , (39)

where X1, X2 and X3 are polynomial functions of (x1, x2, x3) and A is an algebraic function of
(x1, x2, x3), then the 2D system of first-order ODEs defined as

dx1

dt
= X2(x1, x2, x3),

dx2

dt
= −X1(x1, x2, x3), (40)

where x3 is regarded as independent of t, has F(x1, x2, x3) as a first integral.

8
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Proof of lemma 1. Consider the 2D system of first ODEs defined by (40). If G is a function
of (x1, x2) such that

(X2∂x1 − X1∂x2)[G(x1, x2)] = 0, (41)

then G(x1, x2) is a first integral of (40). Applying (X2∂x1 − X1∂x2) to F(x1, x2, x3), we get
X2Fx1 − X1Fx2 . But, by hypothesis, Fx1 = AX1 and Fx2 = AX2 lead to(

X2∂x1 − X1∂x2

)
[F(x1, x2, x3)] = X2AX1 − X1AX2 = 0.

This implies that F(x1, x2, x3) is a first integral of (40). �

Lemma 2. Let
dx1

dt
= F1(x1, x2),

dx2

dt
= F2(x1, x2), (42)

be a 2D system of first ODEs, where F1 and F2 are polynomials in (x1, x2). If A1 and A2

(A1 �= A2) are integrating factors for the 1-form F2 dx1 − F1 dx2, then one of the following
statements is true.

(i)
A1

A2
= I, where I is a first integral of (42).

(ii)
A1

A2
= c, where c is a constant.

Proof of lemma 2. Let A1 and A2 (A1 �= A2) be integrating factors for the 1-form
F2 dx1 − F1 dx2. Then, defining Dsys ≡ F1∂x1 + F2∂x2 (see (11)), we have that

Dsys[A1]

A1
= −(∂x1F1 + ∂x2F2) = Dsys[A2]

A2
⇒ Dsys[A1]

A1
= Dsys[A2]

A2
.

Then

A2Dsys[A1] − A1Dsys[A2] = 0 ⇒ A2
2Dsys

[
A1

A2

]
= 0 ⇒ Dsys

[
A1

A2

]
= 0.

Since Dsys[A1/A2] = 0, [A1/A2] is a constant or a first integral of (42). �

Proof of theorem 2. From the result by Prelle and Singer (see section 3.2.2), if the 3D system
(17) presents an elementary first integral we can assume (without loss of generality) that I is of
the form I = W0 +

∑
i>0 ci ln(Wi), where Wi are algebraic functions of (x, y, z). Therefore,

Ix, Iy and Iz are algebraic functions of (x, y, z). In view of the fact that (see section 3.1)

dI = Ix dx + Iy dy + Iz dz

= r(g dx − f dy) + s(h dx − f dz), (43)

and f, g and h are polynomials in (x, y, z), we can infer that r and s are algebraic functions
of (x, y, z). By the hypothesis of theorem 2, s

r
is a rational function of (x, y, z), so we can

substitute s = r P
Q

in (43) to obtain

dI = r

Q
[(−Qg − Ph) dx + (Qf ) dy + (Pf ) dz]. (44)

Since r is algebraic and Q is a polynomial, r
Q

is an algebraic function of (x, y, z). We still
have to prove that r

Q
is of form (38). To do this let us use lemma 1: comparing dI (see (44)

above) and dF (see (39) on lemma 1) we have, by using lemma 1, that I (x, y, z) is a first
integral of the 2D system of first-order ODEs defined by

dx

dt
= Qf,

dy

dt
= Qg + Ph. (45)

9
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We can make use of this formal result: in section 2.2 we have shown two results by Prelle and
Singer. The second result, applied to the 2D system (45) states that the 1-form

(−Qg − Ph) dx + (Qf ) dy (46)

has an integrating factor R1 of the form

R1 =
∏

i

vi
mi , (47)

where vi are irreducible polynomials in (x, y) and mi are non-zero rational numbers.
However, examining dI (see (44)), we have that r

Q
is also an integrating factor for the

1-form (46), since

Ix = − r

Q
(Qg + Ph); Iy = r

Q
(Qf ). (48)

Since both r
Q

and R1 are integrating factors of (−Qg − Ph) dx + (Qf ) dy we have, using
lemma 2, two possibilities.

(i) R1 = I r
Q

(where I is a first integral of (45)).
(ii) R1 = c r

Q
(where c is a constant).

First possibility: let us consider that R1 = I r
Q

. Since I and I are first integrals of system
(45) then I = F(I ) and, therefore, I is also a first integral of the 3D system (17). So, we can
write

I = F(I ) = R1
r
Q

. (49)

From (49) we can see that the first integral I is an algebraic function of (x, y, z). This means
that there is a rational first integral (see [20]) and, in this case, s and r will be rational functions
of (x, y, z). This implies that r

Q
is rational and the theorem is proved.

Second possibility: let us consider that R1 = c r
Q

. In this case we can conclude that r
Q

is of
the form

∏
i vi

mi , where the coefficients of the polynomials vi could be, in principle, algebraic
functions of z. However, using lemma 1 again, we have that I (x, y, z) is also a first integral
of the 2D system of first-order ODEs defined by

dy

dt
= −Pf,

dz

dt
= Qf. (50)

Following the same reasoning above we have that there exists an algebraic integrating factor
R2 for the 1-form (Qf ) dy + (Pf ) dz of the form

R2 =
∏

i

ui
ki , (51)

where ui are irreducible polynomials in (y, z) and ki are non-zero rational numbers. Besides
that, from equation (44) we have that

Iy = r

Q
(Qf ); Iz = r

Q
(Pf ), (52)

and, so, r
Q

is an integrating factor of the 1-form (Qf ) dy + (Pf ) dz. Since both r
Q

and R2 are
integrating factors of (Qf ) dy + (Pf ) dz, we have (again by using lemma 2) two possibilities.

(i) R2 = J r
Q

(where J is a first integral of (50)).
(ii) R2 = k r

Q
(where k is a constant).

10
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The first possibility will lead to the case where we have a rational first integral and the theorem
is proved. So let us consider that R2 = k r

Q
. In this case we can conclude that r

Q
is of the form∏

i ui
ki , where the coefficients of the polynomials ui could be, in principle, algebraic functions

of x. However, we also have that r
Q

is of the form
∏

i vi
mi , where vi are polynomials in (x, y).

Therefore, r
Q

is of the form
∏

i p
ni

i , where pi are irreducible polynomials in (x, y, z) and ni

are non-zero rational numbers. �

From theorem 2 we can infer the following corollary.

Corollary 1. The polynomials pi (see theorem 2 above) are Darboux polynomials of
the operator D ≡ f ∂x + g∂y + h∂z (i.e. D[pi ]

pi
is a polynomial) or they are factors of the

polynomial f .

Proof of corollary 1. From theorem 2 we have that r
Q

= ∏
i p

ni

i , where pi are irreducible

polynomials in (x, y, z) and ni are non-zero rational numbers. Since, by theorem 1, f
D[r/Q]

r/Q

is polynomial, we have

f
D[r/Q]

r/Q
= f

D
[∏

i pi
ni
]

∏
i pi

ni
= f

∑
ni

D[pi]

pi

= polynomial, (53)

since pi’s are irreducible, or pi |D[pi] or pi |f. �

3.3. A possible algorithm

In this section, we will make use of the mathematics constructed above in order to produce a
semi-algorithm to deal with a class5 of 3D polynomial systems of first-order ODEs.

3.3.1. The idea behind the procedure. From corollary 1 we can write

T ≡ r/Q =
∏

i

pi
ni ⇒ f

D[T ]

T
= f

∑
ni

D[pi]

pi

= f
∑

niqi, (54)

where pi are irreducible Darboux polynomials (in (x, y, z)) of the D operator and qi are the
corresponding co-factors. Then, from equations (32), (33), we can write

f P
D[T ]

T
= f P

∑
niqi = −f D[P ] − P(ffx + gfy + f hz) − Q(fgz − gfz) (55)

and

f Q
D[T ]

T
= f Q

∑
niqi = −f D[Q] − Q(ffx + fgy + hfz) − P(f hy − hfy). (56)

Equations (55), (56) will be the basis of our procedure. Let us begin discussing our
procedure by going through the main steps before formalizing the algorithm.

As it will become clear the first step of our procedure is the most costly one, i.e.
time consuming. In the same way as in the Prelle–Singer procedure for 2D systems of
polynomial first-order ODEs [5], determining the Darboux polynomials and corresponding
co-factors for the D operator is a task that grows as the degree of such polynomials grow.
Our present procedure start by performing this search (determine pi and corresponding
qi). Assuming that this search succeeded and we found pi and qi for some degree deg,
checking (55), (56), we see that it remains to be determined the following set of variables:
{ni, P,Q}, where ni are constants and P and Q are polynomials. How to determine these?

5 s/r is a rational function of (x, y, z).
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Again, by inspecting (55), (56), we note that if we construct two generic polynomials P and
Q (in (x, y, z))) of generic degrees degP and degQ and solve (55), (56) for the coefficients of
such polynomials and for ni, we would have found ni, P and Q and, consequently, T = ∏

i pi
ni .

Since we have r/Q = T , we would have found r.
Once r and s

(
s = r P

Q

)
have been determined, we can use (25) to obtain the first integral

I (x, y, z) by quadratures.

3.3.2. The algorithm itself. The overview above indicates the main trust of our procedure,
below we will present a step-by-step modus operandi of how to implement the above scenario.

• Steps of the algorithm

1. Set deg = 0.
2. Set degQ = 0 and degP = 0.
3. Increase deg: deg = deg + 1.
4. Construct generic polynomials p and q (in (x, y, z)) of degrees deg and

MAX(deg f, deg g, deg z) − 1.
5. Construct the operator D and determine the Darboux polynomials and the associated

co-factors, up to degree deg, for the operator D.
6. Increase degQ and degP : degQ = degQ + 1 and degP = degP + 1.
7. Construct generic polynomials Q and P (in (x, y, z)) of degrees degQ and degP .
8. Try to solve equations (55), (56). for the coefficients defining Q and P and for ni.
9. If we are successful, go to step 10. In the opposite case, if degQ < deg, we return to

step 6. If degQ = deg, return to step 3.
10. Check if s and r satisfy equations (26), (27) and (28). In the affirmative case go to

step 11. In the negative case, return to step 6.
11. Calculate the associated first integral using (25).

3.3.3. The inner works of the method. In this section we will present a detailed
exemplification of the algorithm steps. To do so, we will apply our method to the Lorenz
system, since that will permit us to see the procedure working over a very well-known system.

The Lorenz system6

ẋ = σ(y − x), ẏ = ρx − xz − y, ż = xy − βz (57)

is a famous dynamical model [21], where x, y and z are real variables; and s, r, and b are real
parameters. This system has been thoroughly investigated as a dynamical system and, from
the point of view of integrability, it was also intensively studied using different integrability
theories. In [22], Llibre and Zhang provide a complete classification of the Darboux invariants
of the irreducible Darboux polynomials, of the rational first integrals and of the algebraic
integrability for the classical Lorenz system (see references therein).

Below, we will present in some detail the steps of our algorithm applied to the Lorenz
system (we will omit the solutions with σ = 0 because in this case the Lorenz system becomes
2D).

1. deg = 0.
2. degQ = 0 and degP = 0.
3. deg = 1.
4. p = a1 + a2x + a3y + a4z and q = b1 + b2x + b3y + b4z.

6 u̇ ≡ du
dt

.
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5.

D = σ (y − x) ∂x + (ρx − xz − y) ∂y + (xy − βz) ∂z (58)

For deg = 1 there is only one case presenting Darboux polynomials:
β = 1, ρ = 0, σ = σ .
The Darboux polynomials and the associated co-factors are
p1 := y + iz, q1 := −1 + ix,

p2 := y − iz, q2 := −1 − ix.
6. degQ = 1 and degP = 1.
7. P = p1 + p2x + p3y + p4z and Q = q1 + q2x + q3y + q4z.
8. FAIL.
9. deg = 2.

10. p = a1 + a2x + · · · + a10z
2 and q = b1 + b2x + b3y + b4z.

11. For deg = 2 there are two independent cases presenting Darboux polynomials:
• β = 2σ, ρ = ρ, σ = σ .

The Darboux polynomials and the associated co-factors are
p1 := x2 − 2σz, q1 := −2σ,

degQ = 2 and degP = 2.
P = p1 + p2x + · · · + p10z

2 and Q = q1 + q2x + · · · + q10z
2.

FAIL
• β = 1, ρ = ρ, σ = 1.

The Darboux polynomial and the associated co-factor are
p1 := −rx2 + y2 + z2, q1 := −2,

degQ = 2 and degP = 2.
P = p1 + p2x + · · · + p10z

2 and Q = q1 + q2x + · · · + q10z
2.

FAIL
12. deg = 3.
13. p = a1 + a2x + · · · + a20z

3 and q = b1 + b2x + b3y + b4z.
14. For deg = 3 there are no independent solutions presenting Darboux polynomials.
15. degQ = 3 and degP = 3.
16. P = p1 + p2x + · · · + p20z

3 and Q = q1 + q2x + · · · + q20z
3.

17. FAIL
18. deg = 4.
19. p = a1 + a2x + · · · + a35z

4 and q = b1 + b2x + b3y + b4z.
20. For deg = 4 there are three independent solutions presenting Darboux polynomials:

• β = 4, ρ = ρ, σ = 1.
The Darboux polynomial and the associated co-factor are
p1 := rx2 + y2 − 1/4x4 + x2z − 2xy + 4z − 4zr, q1 := −4.
degQ = 4 and degP = 4.
P = p1 + p2x + · · · + p35z

4 and Q = q1 + q2x + · · · + q35z
4.

FAIL
• β = 6σ − 2, ρ = 2σ − 1, σ = σ .

The Darboux polynomial and the associated co-factor are

p1 := −4
x2

s2
+ 16

x2

s
− 16x2 − 4

x2z

s
+

x4

s2
− 4y2 − 8

xy

s
+ 16xy,

q1 := −4σ,

degQ = 4 and degP = 4.
P = p1 + p2x + · · · + p35z

4 and Q = q1 + q2x + · · · + q35z
4.

FAIL
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• β = 0, ρ = ρ, σ = 1/3.
The Darboux polynomial and the associated co-factor are
p1 := −3rx2 + y2 − 9/4x4 + 3x2z + 2xy, q1 := −4/3,.
degQ = 4 and degP = 4.
P = p1 + p2x + · · · + p35z

4 and Q = q1 + q2x + · · · + q35z
4.

FAIL
21. Etc.

And so on...since, according to Llibre and Zhang [22] there are no more independent
Darboux polynomials other than the ones that we have already found, if we continue
indefinitely we will not succeed in finding an elementary first integral.

So, our only hope to find a first integral is that we proceed (analogously as we did in [18]
for ODEs when analyzing their integrability) and include the parameters in the variables to
be dealt with. In so doing, we will be dealing with sub-cases of the ones already considered
above and (hopefully) we will find a working case (if they exist we will do so).

We can see, for example, that for deg = 1 there exists one degree of freedom in the
choice of σ . We can add the parameter σ to the set of variables we want to determine. For
degQ = 3, degP = 3 we find a solution for σ = 1/2. This leads to the following steps.

• Step 8: n1 = n2 = 3/2, nf = −1, p8 = p30 = 1, q9 = −1 and q29 = 1, lead to
P = x2z + y2,Q = x2y − yz and

R = 2
1

(y2 + z2)3/2(x − y)
, (59)

r = QR = 2
(x2 − z)y

(y2 + z2)3/2(x − y)
, (60)

s = PR = 2
x2z + y2

(y2 + z2)3/2(x − y)
. (61)

• Step 9: success.
• Step 10: success.
• Step 11:

I =
√

(x2 − z)2

y2 + z2
. (62)

3.4. The contribution of our method to the scenario

In this section we will briefly discuss the contribution of our method to the Darboux type
approaches. In this way, we will summarize the Darboux type procedures and comment the
specificities of our algorithm with the help of an example.

As we have already mentioned, in 1878, Darboux[1] showed how to construct first
integrals of 2D polynomial systems having sufficient number of invariant algebraic curves.
When dealing with 3D systems, we can generalize the concept of algebraic curve. More
precisely, consider the polynomial 3D system given by

ẋ = f (x, y, z), ẏ = g(x, y, z), ż = h(x, y, z). (63)

where f, g and h are polynomials in (x, y, z). If p and q are two polynomials of (x, y, z) such
that

D[p] = qp, (64)

14
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where D ≡ f ∂x + g∂y + h∂z, the surface defined by p(x, y, z) = 0 is called an invariant
algebraic surface of the system. Besides that, the polynomial q is called the co-factor of the
invariant algebraic surface p = 0. On the points of an invariant algebraic surface p = 0,

we have that D[p] = 0. Hence, the vector field D is contained into the tangent plane to the
surface p = 0. So, the surface p = 0 is formed by trajectories of the vector field D. This
justifies the name ‘invariant algebraic surface’ given to the algebraic surface p = 0 satisfying
(64) for some polynomial q because it is invariant under the flow defined by D.

Basically, the method consists of performing a search of all polynomials pi satisfying
D[pi] = qipi . Then, one can try to find numbers ni such that the function A defined by

A ≡
∑

i

p
ni

i (65)

is a first integral of the system, i.e. D[A] = 0.
By introducing the concept of the exponential factor, see Christopher [3], this makes it

possible to generalize the Darboux method:
Let a, b be relatively prime polynomials in (x, y, z). Then the function exp(a/b) is called

an exponential factor of the polynomial vector field D if the equality

D
[
exp

(a

b

)]
= K exp

(a

b

)
(66)

is satisfied for some polynomial K of degree at most m − 1. As before we say that K is the
co-factor of the exponential factor exp(a/b) (see [3, 4]), where the exponential factors are
introduced as a limit of suitable invariant algebraic surfaces. From the point of view of the
integrability of polynomial vector fields the importance of the exponential factors is twofold.
On one hand, they verify (66), and on the other hand, their co-factors are polynomials of degree
at most m − 1. These two facts allow them to play the same role as the invariant algebraic
surfaces in the integrability of a three-dimensional polynomial vector field D. Christopher has
also shown that if exp(a/b) is an exponential factor of the polynomial vector field D, then the
polynomial b is of the form

b =
∏

i

p
ni

i , (67)

where pi are Darboux polynomials of the operator D and ni are integers. That allowed Cairó and
Llibre [2] to develop a method by using the exponential factors, introduced by Christopher [3];
the Darboux method could be generalized to deal with elementary (rather than just algebraic)
first integrals. In this method (CLC method) one has to look for first integrals of the form

FI =
∏

i

p
λi

i

∏
j

[
exp

(
aj

bj

)]μj

, (68)

where λj and μj are real numbers. Observing the form of the first integral I that we expect to
obtain by using the CLC method, one can see that applying ln to the first integral turns it to
the form

I = W0 +
∑
i>0

ci ln(Wi), (69)

where Wi are rational functions of (x, y, z).
From (69) it is easy to see that the CLC method is a kind of generalization of the PS

method (see section 2.2) for three dimensions. However, it misses the cases where Wi are
algebraic functions of (x, y, z).

15



J. Phys. A: Math. Theor. 43 (2010) 065204 L G S Duarte and L A C P da Mota

For 3D polynomial systems we could find a semi-algorithm that7 can search for first
integrals where Wi are algebraic functions of (x, y, z). Let us show an example to make things
clearer. Consider the system

ẋ = −2 + 3x2 + 3yx − 2xz + y2 + z2,

ẏ = 1 − 2x2 − yx + 2xz − z2, (70)

ż = x2 − xz + zy + z2.

For this system the D operator is given by

D = (−2 + 3x2 + 3yx − 2xz + y2 + z2)∂x

+ (1 − 2x2 − yx + 2xz − z2)∂y + (x2 − xz + zy + z2)∂z. (71)

For deg = 1, there are two Darboux polynomials. The Darboux polynomials and the associated
co-factors are

p1 = x + y + 1, q1 = x + y − 1,

p2 = x + y − 1, q2 = x + y + 1.

Proceeding in according to the algorithm steps we get

n1 = n2 = −3/2, nf = −1, P = x2 + 2xy + y2 − 1,Q = 2x2 + 3xy + y2 − 2 − zx − zy,

leading to

R = 1

(−2 + 3x2 + 3xy − 2zx + y2 + z2)((y + x + 1)(y + x − 1))3/2
, (72)

r = QR = 2x2 + 3xy + y2 − 2 − zx − zy

(−2 + 3x2 + 3xy − 2zx + y2 + z2)(x2 + 2xy + y2 − 1)3/2
, (73)

s = PR = 1√
x2 + 2xy + y2 − 1(−2 + 3x2 + 3xy − 2zx + y2 + z2)

. (74)

I = z + y√
(x + y)2 − 1

+ ln(x + y +
√

(x + y)2 − 1). (75)

Since the first integral I is non-algebraic and the system has three dimensions, it is out of
the scope of the Darboux and PS methods. Besides that, applying exp to it, we obtain

FI = (x + y +
√

(x + y)2 − 1) exp

(
z + y√

(x + y)2 − 1

)
. (76)

We can see that, since x + y +
√

(x + y)2 − 1 and z+y√
(x+y)2−1

are non-rational, we could not

construct the first integral FI using the CLC method.

4. Conclusion

Here, we have presented a (semi)-algorithm that is a Darboux type procedure. In many ways,
it is an extension (working with 3D systems) of the seminal work by Prelle and Singer [5]
(dealing with 2D systems). It shares the same features as the Prelle–Singer approach: for

7 In the case where s/r is a rational function (see section 3.2).
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instance, it assures that, if the elementary first integral exists, it will eventually get it (of course,
in practice it may take (depending on the order of the problem) a great deal of time to do so.

Our method is not general, it deals with the case where the corresponding first integral
is elementary (please note that it is analogous to the Prelle and Singer situation where this
restriction is also applied). But, when it is applicable, our algorithm proved to be very effective
(in the sense that it covers some ground where other Darboux type approaches failed) and it is
also very practical (in the sense that it is quick and not computationally costly).

A possible extension of the present work is to generalize these results to the case of
Liouvillian first integral. This is presently being pursued.
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